Cart (Loading....) | Create Account
Close category search window

Luminescence Properties of ZnO Nanocrystals and Ceramics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Grigorjeva, L. ; Inst. of Solid State Phys., Latvia Univ., Riga ; Millers, D. ; Grabis, J. ; Monty, C.
more authors

The luminescence excitation spectra, luminescence spectra and the nanosecond-scale decay kinetics were studied. The ZnO and ZnO:Al nanopowders were prepared by vaporization-condensation in a solar furnace using different raw powders: commercial, hydrothermal and those obtained by plasma synthesis. Exciton-phonon as well as exciton-exciton interaction processes in nanopowders, a bulk crystal and ZnO ceramics were studied and compared. The fast decay and low afterglow intensity of ZnO nanopowders and ceramics support these materials for scintillators.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:55 ,  Issue: 3 )

Date of Publication:

June 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.