Cart (Loading....) | Create Account
Close category search window
 

Comparison of Cathodoluminescent and Photoluminescent Emission Spectra of {\rm LuPO} _{4} With Europium, Erbium, and Neodymium Dopants

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Goedeke, S.M. ; Oak Ridge Nat. Lab. (ORNL), Oak Ridge, TN ; Hollerman, W.A. ; Allison, S.W. ; Gray, P.A.
more authors

The current interest in returning human exploration to the Moon and Mars makes cost-effective and low-mass health monitoring sensors essential for spacecraft development. In space, there are many surface measurements that are required to monitor the condition of the spacecraft including: surface temperature, radiation dose, and impact. Through the use of tailored phosphors, these conditions can be monitored. Practical space-based phosphor sensors will depend heavily upon research investigating the resistance of phosphors to ionizing radiation and their ability to anneal or "self-heal" from damage caused by ionizing radiation. For the present research, a group of lutetium orthophosphate (LuPO4) crystals with dopants including europium, erbium, and neodymium were characterized. Cathodoluminescence (CL) testing was performed using the low energy electron system located at the NASA Marshall Space Flight Center in Huntsville, Alabama. The data were collected using an Ocean Optics HR4000 spectrometer and a fiber optic feed-through. Previous research has shown that increases in both beam energy and current density improved the CL fluorescence yield. While the total electron dose was small, the intention was to maximize the number of irradiated materials. Additionally, these samples were evaluated using a PTI Quantum Master Spectrophotometer to determine the photoluminescence emission spectra.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:55 ,  Issue: 3 )

Date of Publication:

June 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.