By Topic

Improving the Retention and Endurance Characteristics of Charge-Trapping Memory by Using Double Quantum Barriers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Lin, S.H. ; Dept. of Electr. Eng., Nat. Tsing-Hua Univ., Hsinchu ; Yang, H.J. ; Chen, W.B. ; Yeh, F.S.
more authors

We have studied the performance of double-quantum-barrier [TaN-Ir3Si]-[HfAlO-LaAlO3]-Hf0.3N0.2O0.5-[HfAlO-SiO2]-Si charge-trapping memory devices. These devices display good characteristics in terms of their plusmn9-V program/erase (P/E) voltage, 100-mus P/E speed, initial 3.2-V memory window, and ten-year extrapolated data retention window of 2.4 V at 150 degC. The retention decay rate is significantly better than single-barrier MONOS devices, as is the cycled retention data, due to the reduced interface trap generation.

Published in:

Electron Devices, IEEE Transactions on  (Volume:55 ,  Issue: 7 )