By Topic

Asynchronous Iterative Water-Filling for Gaussian Frequency-Selective Interference Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Scutari, G. ; Dept. INFOCOM, Univ. of Rome "La Sapienza, Rome ; Palomar, D.P. ; Barbarossa, S.

This paper considers the maximization of information rates for the Gaussian frequency-selective interference channel, subject to power and spectral mask constraints on each link. To derive decentralized solutions that do not require any cooperation among the users, the optimization problem is formulated as a static noncooperative game of complete information. To achieve the so-called Nash equilibria of the game, we propose a new distributed algorithm called asynchronous iterative water-filling algorithm. In this algorithm, the users update their power spectral density (PSD) in a completely distributed and asynchronous way: some users may update their power allocation more frequently than others and they may even use outdated measurements of the received interference. The proposed algorithm represents a unified framework that encompasses and generalizes all known iterative water-filling algorithms, e.g., sequential and simultaneous versions. The main result of the paper consists of a unified set of conditions that guarantee the global converge of the proposed algorithm to the (unique) Nash equilibrium of the game.

Published in:

Information Theory, IEEE Transactions on  (Volume:54 ,  Issue: 7 )