By Topic

On Optimal Quantization Rules for Some Problems in Sequential Decentralized Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
XuanLong Nguyen ; Dept. of Stat. Sci., Duke Univ., Research Triangle Park, NC ; Wainwright, M.J. ; Jordan, M.I.

We consider the design of systems for sequential decentralized detection, a problem that entails several interdependent choices: the choice of a stopping rule (specifying the sample size), a global decision function (a choice between two competing hypotheses), and a set of quantization rules (the local decisions on the basis of which the global decision is made). This correspondence addresses an open problem of whether in the Bayesian formulation of sequential decentralized detection, optimal local decision functions can be found within the class of stationary rules. We develop an asymptotic approximation to the optimal cost of stationary quantization rules and exploit this approximation to show that stationary quantizers are not optimal in a broad class of settings. We also consider the class of blockwise-stationary quantizers, and show that asymptotically optimal quantizers are likelihood-based threshold rules.

Published in:

Information Theory, IEEE Transactions on  (Volume:54 ,  Issue: 7 )