Cart (Loading....) | Create Account
Close category search window
 

DDBDD: Delay-Driven BDD Synthesis for FPGAs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lei Cheng ; Synplicity, Inc., Sunnyvale, CA ; Deming Chen ; Wong, M.D.F.

In this paper, we target field-programmable gate array (FPGA) performance optimization using a novel binary decision diagram (BDD)-based synthesis paradigm. Most previous works have focused on BDD size reduction during logic synthesis. In this paper, we concentrate on delay reduction and conclude that there is a large optimization margin through BDD synthesis for FPGA performance optimization. Our contributions are threefold: 1) we propose a gain-based clustering and partial collapsing algorithm to prepare the initial design for BDD synthesis for better delay; 2) we use a technique called linear expansion for BDD decomposition, which, in turn, enables a dynamic programming algorithm to efficiently search through the optimization space for the BDD of each node in the clustered circuit; and 3) we consider special decomposition scenarios coupled with linear expansion for further improvement on the quality of results. Experimental results show that we can achieve a 30% performance gain with a 22% area overhead on the average compared to a previous state-of-the-art BDD-based FPGA synthesis tool, namely, BDS-pga. Compared to DAOmap, we can achieve a 33% performance gain with only an 8% area overhead. Compared to the ABC mapper, we can achieve a 20% performance gain with only an 8% area overhead.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:27 ,  Issue: 7 )

Date of Publication:

July 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.