By Topic

A Novel Uncertainty Decoding Rule With Applications to Transmission Error Robust Speech Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ion, Valentin ; Dept. of Commun. Eng., Univ. of Paderborn, Paderborn ; Haeb-Umbach, R.

In this paper, we derive an uncertainty decoding rule for automatic speech recognition (ASR), which accounts for both corrupted observations and inter-frame correlation. The conditional independence assumption, prevalent in hidden Markov model-based ASR, is relaxed to obtain a clean speech posterior that is conditioned on the complete observed feature vector sequence. This is a more informative posterior than one conditioned only on the current observation. The novel decoding is used to obtain a transmission-error robust remote ASR system, where the speech capturing unit is connected to the decoder via an error-prone communication network. We show how the clean speech posterior can be computed for communication links being characterized by either bit errors or packet loss. Recognition results are presented for both distributed and network speech recognition, where in the latter case common voice-over-IP codecs are employed.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:16 ,  Issue: 5 )