By Topic

PSO and ACO algorithms applied to location optimization of the WLAN base station

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Vilovic, I. ; Univ. of Dubrovnik, Dubrovnik ; Burum, N. ; Sipus, Z. ; Nađ, R.

The main goal of this work is to show the use of evolutionary computation techniques. The particle swarm optimization (PSO) and ant colony optimization (ACO) in indoor propagation problem. These algorithms employ different strategies and computational efforts, but also they have something in common. Therefore, it is appropriate to compare their performance with the genetic algorithm (GA). We have demonstrated their ability to optimize base station location using data from neural network model of wireless local area network (WLAN). The results show that PSO has- better properties compared to ACO algorithm. The ACO algorithm needs further work to optimize the algorithm parameters, improve analysis of pheromone data and reduce computation time. However, the ant colony based approach is utilizable for solving such problems.

Published in:

Applied Electromagnetics and Communications, 2007. ICECom 2007. 19th International Conference on

Date of Conference:

24-26 Sept. 2007