By Topic

Adaptive Fusion of Gait and Face for Human Identification in Video

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xin Geng ; Sch. of Eng. & Inf. Technol., Deakin Univ., Geelong, VIC ; Liang Wang ; Ming Li ; Qiang Wu
more authors

Most work on multi-biometric fusion is based on static fusion rules which cannot respond to the changes of the environment and the individual users. This paper proposes adaptive multi-biometric fusion, which dynamically adjusts the fusion rules to suit the real-time external conditions. As a typical example, the adaptive fusion of gait and face in video is studied. Two factors that may affect the relationship between gait and face in the fusion are considered, i.e., the view angle and the subject-to-camera distance. Together they determine the way gait and face are fused at an arbitrary time. Experimental results show that the adaptive fusion performs significantly better than not only single biometric traits, but also those widely adopted static fusion rules including SUM, PRODUCT, MIN, and MAX.

Published in:

Applications of Computer Vision, 2008. WACV 2008. IEEE Workshop on

Date of Conference:

7-9 Jan. 2008