By Topic

Temporal reasoning for scenario recognition in video-surveillance using Bayesian networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ziani, A. ; Lab. LASL EA 2600, Univ. du Littoral Cote d''Opale, Calais ; Motamed, C. ; Noyer, J.C.

The authors propose a high-level scenario recognition algorithm for video sequence interpretation. The recognition of scenarios is based on a Bayesian networks approach. The model of a scenario contains two main layers. The first one allows events from the observed visual features to be highlighted and the second layer is focused on the temporal reasoning stage. The temporal layer uses specific nodes permitting an event-based approach. These nodes focus on the lifetime of events highlighted from the results of the first layer. The temporal layer then estimates the qualitative and quantitative relations between the different temporal events helpful for the recognition task. The global recognition algorithm is illustrated over real indoor image sequences of an abandoned baggage scenario.

Published in:

Computer Vision, IET  (Volume:2 ,  Issue: 2 )