By Topic

Application of Kalman Filter to Remove TMS-Induced Artifacts from EEG Recordings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Fabio Morbidi ; Dipt. di Ing. dell'Inf., Univ. di Siena, Siena ; Andrea Garulli ; Domenico Prattichizzo ; Cristiano Rizzo
more authors

Transcranial magnetic stimulation (TMS) is a technique in which a pulsed magnetic field created by a coil positioned next to the scalp is used to locally depolarize neurons in brain cortex. TMS can be combined with electroencephalography (EEG) to visualize regional brain activity in response to direct cortical stimulation, making it a promising tool for studying brain function. A technical drawback of EEG/TMS coregistrations is that the TMS impulse generates high amplitude and long-lasting artifacts that corrupt the EEG trace. In this brief, an offline Kalman filter approach to remove TMS-induced artifacts from EEG recordings is proposed. The Kalman filter is applied to the linear system arising from the combination of the dynamic models describing EEG and TMS signals generation. Time-varying covariance matrices suitably tuned on the physical parameters of the problem allow us to model the non-stationary components of the EEG/TMS signal, (neglected by conventional stationary filters). Experimental results show that the proposed approach guarantees an efficient deletion of TMS-induced artifacts while preserving the integrity of EEG signals around TMS impulses.

Published in:

IEEE Transactions on Control Systems Technology  (Volume:16 ,  Issue: 6 )