By Topic

Color-Based Image Salient Region Segmentation Using Novel Region Merging Strategy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yu-Hsin Kuan ; Dept. of Inf. Eng., I-Shou Univ., Kaohsiung ; Chung-Ming Kuo ; Nai-Chung Yang

In this paper, we propose a novel unsupervised algorithm for the segmentation of salient regions in color images. There are three phases in this algorithm. In the first phase, we use nonparametric density estimation to extract candidates of dominant colors in an image, which are then used for the quantization of the image. The label map of the quantized image forms initial regions of segmentation. In the second phase, we define salient region with two properties; i.e., conspicuous; compact and complete. According to the definition, two new parameters are proposed. One is called ldquoImportance indexrdquo, which is used to measure the importance of a region, and the other is called ldquoMerging likelihoodrdquo, which is utilized to measure the suitability of region merging. Initial regions are merged based on the two new parameters. In the third phase, a similarity check is performed to further merge the surviving regions. Experimental results show that the proposed method achieves excellent segmentation performance for most of our test images. In addition, the computation is very efficient.

Published in:

Multimedia, IEEE Transactions on  (Volume:10 ,  Issue: 5 )