By Topic

Kinematics and calibration of active cannulas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Webster, R.J. ; Mech. Eng., Vanderbilt Univ., Nashville, TN ; Romano, J.M. ; Cowan, N.J.

Active cannulas are remotely actuated thin continuum robots with the potential to traverse narrow and winding environments without relying on "guiding" environmental reaction forces. These features seem ideal for procedures requiring passage through narrow openings to access air-filled cavities (e.g. surgery in the throat and lung). Composed of telescoping concentric pre-curved elastic tubes, an active cannula is actuated at its base by translation and axial rotation of component tubes. Using minimum energy principles and Lie Group theory, we present a framework for the kinematics of multi-link active cannulas. This framework permits testing of the hypothesis that overall cannula shape locally minimizes stored elastic energy. We evaluate in particular whether the torsional energy in the long, straight transmission between actuators and the curved sections is important. Including torsion in the kinematic model enables us to analytically predict experimentally observed bifurcation in the energy landscape. Independent calibration procedures based on bifurcation and tip and feature positions enable model parameter identification, producing results near ranges expected from tube material properties and geometry. Experimental results validate the kinematic framework and demonstrate the importance of modeling torsional effects in order to describe bifurcation and accurately predict active cannula shape.

Published in:

Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on

Date of Conference:

19-23 May 2008