By Topic

A novel key-variable sifting algorithm for virtual metrology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Tung-Ho Lin ; Institute of Manufacturing Engineering, National Cheng Kung University, Tainan 70101, China ; Fan-Tien Cheng ; Aeo-Juo Ye ; Wei-Ming Wu
more authors

This work proposes an advanced key-variable selecting method, the neural-network-based stepwise selection (NN-based SS) method, which can enhance the conjecture accuracy of the NN-based virtual metrology (VM) algorithms. Multi-regression-based (MR-based) SS method is widely applied in dealing with key-variable selecting problems despite that it may not guarantee finding the best model based on its selected variables. However, the variables selected by MR-based SS may be adopted as the initial set of variables for the proposed NN-based SS to reduce the SS process time. The backward elimination and forward selection procedures of the proposed NN-based SS are both performed by the designated NN algorithm used for VM conjecturing. Therefore, the key variables selected by NN-based SS will be more suitable for the said NN-based VM algorithm as far as conjecture accuracy is concerned. The etching process of semiconductor manufacturing is used as the illustrative example to test and verify the VM conjecture accuracy. One-hidden-layered back-propagation neural networks (BPNN-I) are adopted for establishing the NN models used in the NN-based SS method and the VM conjecture models. Test results show that the NN model created by the selected variables of NN-based SS can achieve better conjecture accuracy than that of MR-based SS. Simple recurrent neural networks (SRNN) are also tested and proved to be able to achieve similar results as those of BPNN-I.

Published in:

Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on

Date of Conference:

19-23 May 2008