Cart (Loading....) | Create Account
Close category search window
 

VSA-II: a novel prototype of variable stiffness actuator for safe and performing robots interacting with humans

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Schiavi, R. ; Interdepartmental Res. Center "E. Piaggio", Univ. of Pisa, Pisa ; Grioli, G. ; Sen, S. ; Bicchi, A.

This paper presents design and performance of a novel joint based actuator for a robot run by variable stiffness actuation, meant for systems physically interacting with humans. This new actuator prototype (VSA-II) is developed as an improvement over our previously developed one reported in [9], where an optimal mechanical-control co-design principle established in [7] is followed as well. While the first version was built in a way to demonstrate effectiveness of variable impedance actuation (VIA), it had limitations in torque capacities, life cycle and implementability in a real robot. VSA-II overcomes the problem of implementability with higher capacities and robustness in design for longer life. The paper discusses design and stiffness behaviour of VSA-II in theory and experiments. A comparison of stiffness characteristics between the two actuator is discussed, highlighting the advantages of the new design. A simple, but effective PD scheme is employed to independently control joint-stiffness and joint-position of a 1-link arm. Finally, results from performed impact tests of 1- link arm are reported, showing the effectiveness of stiffness variation in controlling value of a safety metric.

Published in:

Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on

Date of Conference:

19-23 May 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.