Cart (Loading....) | Create Account
Close category search window
 

Simultaneous learning of motion and sensor model parameters for mobile robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yap, T.N. ; Dept. of Comput. Sci. & Eng., Univ. of California, Riverside, CA ; Shelton, C.R.

Motion and sensor models are crucial components in current algorithms for mobile robot localization and mapping. These models are typically provided and hand-tuned by a human operator and are often derived from intensive and careful calibration experiments and the operator's knowledge and experience with the robot and its operating environment. In this paper, we demonstrate how the parameters of both the motion and sensor models can be automatically estimated during normal robot operations via machine learning methods thereby eliminating the necessity of manually tuning these models through a laborious calibration process. Results from real-world robotic experiments are presented that show the effectiveness of the estimation approach.

Published in:

Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on

Date of Conference:

19-23 May 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.