By Topic

Human detection using iterative feature selection and logistic principal component analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Abd-Almageed, W. ; Inst. for Adv. Comput. Studies, Univ. of Maryland, College Park, MD ; Davis, L.

We present a fast feature selection algorithm suitable for object detection applications where the image being tested must be scanned repeatedly to detected the object of interest at different locations and scales. The algorithm iteratively estimates the belongness probability of image pixels to foreground of the image. To prove the validity of the algorithm, we apply it to a human detection problem. The edge map is filtered using a feature selection algorithm. The filtered edge map is then projected onto an eigen space of human shapes to determine if the image contains a human. Since the edge maps are binary in nature, Logistic Principal Component Analysis is used to obtain the eigen human shape space. Experimental results illustrate the accuracy of the human detector.

Published in:

Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on

Date of Conference:

19-23 May 2008