By Topic

Propagation mechanism of electrical tree in XLPE cable insulation by investigating a double electrical tree structure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaoquan Zheng ; State Key Lab. of Power Equip. & Electr. Insulation, Xi'an Jiaotong Univ., Xi'an ; George Chen

This paper presents our experiments and analysis of the electrical tree growing characteristics. The relationship between electrical tree propagation and the material morphology in XLPE cable insulation has been studied by researching the structure and growth characteristics of a double structure electrical tree. It has been found that, due to the influence of uneven congregating state, difference in crystalline structure, and the existence of residual stress in semi-crystalline polymer, five types of electrical tree structures (branch, bush, bine-branch, pine-branch, and mixed configurations) would propagate in XLPE cable insulation. Three basic treeing propagation phases (initiation, stagnation, and rapid propagating phases) are presented in electrical tree propagating process. If initiation phase is very active, the single branch tree will propagate while if this phase is weak then the bush tree will occur more easily. There would be a clear double structure of electrical tree when it grows at submicroscopic structure uneven region of the material. A new parameter, the expansion coefficient is introduced to describe the electrical tree propagation characteristics. In addition, two other coefficients being used to describe our experimental results are dynamic fractal dimension and growth rate of electrical tree.

Published in:

IEEE Transactions on Dielectrics and Electrical Insulation  (Volume:15 ,  Issue: 3 )