Cart (Loading....) | Create Account
Close category search window
 

Optical observations of partial discharge-induced bubbles generated in subcooled liquid nitrogen at atmospheric pressure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Suehiro, J. ; Grad. Sch. of Inf. Sci. & Electr. Eng., Kyushu Univ., Fukuoka ; Imasaka, K. ; Hara, M.

Composite insulation system of liquid nitrogen and solid insulator, which are widely employed in high TC superconducting equipment, can be deteriorated by partial discharge (PD) generated in highly stressed region. By subcooling the liquid nitrogen below the boiling point of 77 K at atmospheric pressure, the superconducting power device can obtain higher performance because the critical current density of the superconductor can be increased. The subcooled liquid nitrogen may also have better properties as electrical insulation medium than pool boiling one because gaseous bubble generation is suppressed. In this study, effects of subcooling temperature on PD characteristics were investigated at atmospheric pressure. Behavior of PD induced bubbles was optically investigated using a high speed digital imaging system as well as a laser light scattering method. These optical observations were synchronized with PD signal detection in order to clarify relationship between the PD intensity and bubble behavior. It was found that PD induced bubbles were strongly influenced by the PD energy as well as temperature of the subcooled liquid nitrogen.

Published in:

Dielectrics and Electrical Insulation, IEEE Transactions on  (Volume:15 ,  Issue: 3 )

Date of Publication:

June 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.