Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Burst-Mode Clock Recovery Utilizing Relaxation Oscillation in Directly Modulated Lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Minhui Yan ; Dept. of Electr. & Comput. Eng., McMaster Univ., Hamilton, ON ; Chih-Hung Chen ; Huang, Wei-Ping

A novel clock recovery scheme utilizing the relaxation oscillation in a directly modulated laser (DML) for burst-mode transmission is proposed for the first time. In this scheme, the DML generates the clock tone along with the transmitted non-return-to-zero data in the optical signal. An injection-locked oscillator (ILO) is employed in the receiver to extract the clock tone and restore the clock. The proposed scheme is investigated systematically and verified by simulations with different laser modulation currents as well as some nonideal characteristics of the system. The simulation results show that the low cost clock recovery method using an ILO in an optical link using a regular DML is highly efficient for burst-mode transmission at 10 Gbps.

Published in:

Lightwave Technology, Journal of  (Volume:26 ,  Issue: 12 )