By Topic

Series Analysis of Active Mode-Locked Laser Under the Influence of ASE Noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Huy Quoc Lam ; Network Technol. Res. Centre, Nanyang Technol. Univ., Singapore ; Ping Shum ; Le Nguyen Binh ; Gong, Y.D.
more authors

We analyze an active mode-locked laser under the influence of asynchronous spontaneous emission (ASE) noise by using eight mathematical series Sn, Qn, Rn, an, bn, cn, rn, and Pn to trace the evolution of the noise. The series are easily calculated from the laser parameters and are used to determine the steady-state pulse of the active mode-locked laser operating in both exactly tuned and detuned conditions. Series analysis results of ideal noiseless laser models are consistent with that of classical self-consistence methods. The advantage of our series approach is that it can be used for studying laser model even in the presence of the inline optically amplified noise. Analysis of the laser model with ASE noise reveals that the large noise figure amplifier and high cavity loss degrade the signal-to-noise ratio (SNR). Large decrease of SNR caused by detuning limits the locking range of the laser. The series method can be used not only to determine the characteristics of the steady state pulse but also to study the transient process of the noise inside the laser and to determine the locking range of the laser when the ASE noise is considered. Our analytical results are visualized by simulation results.

Published in:

Lightwave Technology, Journal of  (Volume:26 ,  Issue: 12 )