By Topic

Optical Interconnection Platform Composed of Fiber-Embedded Board, 90 ^{\circ} -Bent Fiber Block, and 10-Gb/s Optical Module

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Sung Hwan Hwang ; Opt. Interconnection & Switching Lab., Inf. & Commun. Univ., Daejeon ; Mu Hee Cho ; Sae-Kyoung Kang ; Han Seo Cho
more authors

An architecture of a passively assembled optical platform is suggested for a chip-to-chip optical interconnection system. The platform is constructed using all-fiber media for the optical paths: a fiber-embedded optical printed-circuit board (OPCB) and 90-bent fiber connector. The passive assembling was achieved by employing the guide pins/holes of commercialized ferrules in the optical link between the OPCB, 90-bent fiber connector, and the transmitter/receiver (Tx/Rx) module. From this interconnection scheme, a low total optical loss of was obtained. From an assembled platform with 10 Gb/s/ch 4 ch Tx/Rx modules, a 7-Gb/s/ch data transmission was demonstrated with a bit error rate below , involving the optical and electrical crosstalk arisen in the whole channel operation.

Published in:

Journal of Lightwave Technology  (Volume:26 ,  Issue: 11 )