By Topic

Decentralized Environmental Modeling by Mobile Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lynch, K.M. ; Dept. of Mech. Eng., Northwestern Univ., Evanston, IL ; Schwartz, I.B. ; Peng Yang ; Freeman, R.A.

Cooperating mobile sensors can be used to model environmental functions such as the temperature or salinity of a region of ocean. In this paper, we adopt an optimal filtering approach to fusing local sensor data into a global model of the environment. Our approach is based on the use of proportional-integral (PI) average consensus estimators, whereby information from each mobile sensor diffuses through the communication network. As a result, this approach is scalable and fully decentralized, and allows changing network topologies and anonymous agents to be added and subtracted at any time. We also derive control laws for mobile sensors to move to maximize their sensory information relative to current uncertainties in the model. The approach is demonstrated by simulations including modeling ocean temperature.

Published in:

Robotics, IEEE Transactions on  (Volume:24 ,  Issue: 3 )