Cart (Loading....) | Create Account
Close category search window
 

Design and Development of the Lifting and Propulsion Mechanism for a Biologically Inspired Water Runner Robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Floyd, S. ; Dept. of Mech. Eng., Carnegie Mellon Univ., Pittsburgh, PA ; Sitti, M.

This paper describes the design and development of a novel robot, which attempts to emulate the basilisk lizard's ability to run on the surface of water. Previous studies of the lizards themselves have characterized their means of staying afloat. The design of a biomimetic robot utilizing similar principles is discussed, modeled, and prototyped. Functionally, the robot uses a pair of identical four bar mechanisms, with a 180 deg phase shift to achieve locomotion on the water's surface. Simulations for determining robot lift and power requirements are presented. Through simulation and experimentation, parameters are varied with the focus being a maximization of the ratio of lift to power. Four legged robots were more easily stabilized, and had a higher lift-to-power ratio than two legged robots. Decreases in characteristic length and running speed, and increases in foot diameter and foot penetration depth all cause a higher lift to power ratio. Experimental lift approached 80 gr, and experimental performance exceeded 12 gr/W for four legged robots with circular feet. This work opens the door for legged robots to become ambulatory over both land and water, and represents a first step toward robots which run on the water instead of floating or swimming.

Published in:

Robotics, IEEE Transactions on  (Volume:24 ,  Issue: 3 )

Date of Publication:

June 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.