By Topic

Dynamics of a High-Agility, Low-Power Imaging Payload

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Carpenter, M.D. ; Dept. of Theor. & Appl. Mech., Cornell Univ., Ithaca, NY ; Peck, M.A.

Control-moment gyroscopes (CMGs) are power-efficient attitude-control actuators that produce high torques for agile spacecraft. We propose the use of CMGs in actuating joint degrees of freedom in a spacecraft-mounted agile imaging payload, whose tasks include acquiring and tracking a high-speed target. High agility, on the order of several radians per second, characterizes the system of interest here; however, such capabilities are achieved with traditional actuators only at the expense of excessively high electrical power. The proposed design provides agile slewing of an imaging payload for a very small fraction of the power required by fixed rotors in a reaction wheel assembly. This study provides a dynamics analysis for a general system, but we focus on an example in which the inertia dyadics are spherical. We demonstrate by simulation that a CMG-driven system offers the same agility with less than 1% of the power of a telescope actuated by reaction wheels.

Published in:

Robotics, IEEE Transactions on  (Volume:24 ,  Issue: 3 )