By Topic

Stable Approximation of Unstable Transfer Function Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Balogh, L. ; Dept. of Meas. & Instrum. Eng., Budapest Univ. of Technol. & Econ., Budapest ; Pintelon, R.

The result of a system identification experiment is usually a parametric continuous-time (s-domain) or discrete-time (z-domain) model. Due to noise on the measurements and/or nonlinear distortions, this model can be unstable. If an additional delay is added to the unstable system, then experience shows that a stable approximation with small approximation error can be obtained. In this paper, a new numerical algorithm is proposed for finding a delay that gives a stable result. Contrary to classical approaches, it needs fewer gradientlike steps during the approximation process.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:57 ,  Issue: 12 )