By Topic

On the Relative and Absolute Positioning Errors in Self-Localization Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ash, J.N. ; Dept. of Electr. & Comput. Eng., Ohio State Univ., Columbus, OH ; Moses, R.L.

This paper considers the accuracy of sensor node location estimates from self-calibration in sensor networks. The total parameter space is shown to have a natural decomposition into relative and centroid transformation components. A linear representation of the transformation parameter space is shown to coincide with the nullspace of the unconstrained Fisher information matrix (FIM). The centroid transformation subspace-which includes representations of rotation, translation, and scaling-is characterized for a number of measurement models including distance, time-of-arrival (TOA), time-difference-of-arrival (TDOA), angle-of-arrival (AOA), and angle-difference-of-arrival (ADOA) measurements. The error decomposition may be applied to any localization algorithm in order to better understand its performance characteristics, and it may be applied to the Cramer-Rao bound (CRB) to determine performance limits in the relative and transformation domains. A geometric interpretation of the constrained CRB is provided based on the principal angles between the measurement subspace and the constraint subspace. Examples are presented to illustrate the utility of the proposed error decomposition into relative and transformation components.

Published in:

Signal Processing, IEEE Transactions on  (Volume:56 ,  Issue: 11 )