By Topic

An optimized link adaptation scheme for efficient delivery of scalable H.264 Video over IEEE 802.11n

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Fallah, Y.P. ; Dept of Electr. & Comput. Eng., Univ. of British Columbia, Vancouver, BC ; Mansour, H. ; Khan, S. ; Nasiopoulos, P.
more authors

In this paper, we propose a cross-layer optimization scheme for delivery of scalable video over variable bit-rate wireless networks, in particular 802.11 based wireless local area networks (WLAN). For scalable video streaming applications, the conventional solution to reduced throughput due to channel distortions is to reduce the video bitrate by dropping the higher enhancement layers of the scalable video. We show that video quality can be improved, without adding to traffic load, when the WLAN link adaptation scheme uses a temporal fairness criterion along with scalable video distortion estimates to adjust its physical (PHY) layer modulation and coding parameters used for delivering each video layer. We formulate the problem as an optimization problem for assigning different PHY modes to different layers of scalable video under temporal fairness constrains; the solution to this problem provides a set of PHY configuration parameters that achieve the highest possible video quality while meeting the admission control constraints. Performance evaluations demonstrate the effectiveness of our method and the accuracy of the models.

Published in:

Circuits and Systems, 2008. ISCAS 2008. IEEE International Symposium on

Date of Conference:

18-21 May 2008