By Topic

Robust wide range of supply-voltage operation using continuous adaptive size-ratio gates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sami Kirolos ; Department of Electrical and Computer Engineering, Rice University, Houston, USA ; Yehia Massoud

In this paper, we present an adaptive circuit design that is capable of increasing the effective size-ratio of combinational logic gates to extend the balanced operation in the subthreshold region as well as to maintain high performance at the nominal Vdd. We optimize the sizes of the PMOS transistors in the pull-up network for minimum power dissipation and propagation delay over a wide range of supply voltage. In addition to the minimized energy operation, the dynamically adjustable gate size-ratio allows the gate to preserve a symmetric voltage transfer characteristic at both normal supply and subthreshold operation, which translates to maximized noise margins. Simulation results show that up to 70.9% reduction in the energy can be achieved for a ring oscillator, as compared to the fixed size design capable of operating under supply voltage in the range of 75 mV to 1.2 V Our adaptive circuit design presents an efficient solution for minimum energy circuit operation while preserving the high performance capability at the nominal VDD.

Published in:

2008 IEEE International Symposium on Circuits and Systems

Date of Conference:

18-21 May 2008