By Topic

Minimum redundancy MIMO radars

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chun-Yang Chen ; Dept. of Electrical Engineering, MC 136-93, California Institute of Technology, Pasadena, 91125, USA ; P. P. Vaidyanathan

The multiple-input multiple-output (MIMO) radar concept has drawn considerable attention recently. In the traditional single-input multiple-output (SIMO) radar system, the transmitter emits scaled versions of a single waveform. However, in the MIMO radar system, the transmitter transmits independent waveforms. It has been shown that the MIMO radar can be used to improve system performance. Most of the MIMO radar research so far has focused on the uniform array. However, it is in general a loss of optimality to assume the array to be uniform. In this paper, the nonuniform array design problem in the MIMO radar is studied. In the SIMO radar, it has been shown that there is a class of linear arrays which minimizes the number of redundant spacings in the array. These are called minimum redundancy linear arrays. It has been shown that this class of arrays has excellent performance in rejection of mainlobe interferences. In this paper, the idea of minimum redundancy linear array is extended to the MIMO radar case. The numerical examples show that the proposed minimum redundancy MIMO radar results in improved rejection of mainlobe interferences, with negligible degradation in sidelobe interference rejection capabilities.

Published in:

2008 IEEE International Symposium on Circuits and Systems

Date of Conference:

18-21 May 2008