By Topic

On the non-uniform complexity of brain connectivity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Haro, G. ; Univ. Politec. de Catalunya, Barcelona ; Lenglet, C. ; Sapiro, G. ; Thompson, P.

A stratification and manifold learning approach for analyzing High Angular Resolution Diffusion Imaging (HARDI) data is introduced in this paper. HARDI data provides high- dimensional signals measuring the complex microstructure of biological tissues, such as the cerebral white matter. We show that these high-dimensional spaces may be understood as unions of manifolds of varying dimensions/complexity and densities. With such analysis, we use clustering to characterize the structural complexity of the white matter. We briefly present the underlying framework and numerical experiments illustrating this original and promising approach.

Published in:

Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008. 5th IEEE International Symposium on

Date of Conference:

14-17 May 2008