Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

CUDA: Scalable parallel programming for high-performance scientific computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
1 Author(s)
Luebke, D. ; NVIDIA Corp., Santa Clara, CA

Graphics processing units (GPUs) originally designed for computer video cards have emerged as the most powerful chip in a high-performance workstation. Unlike multicore CPU architectures, which currently ship with two or four cores, GPU architectures are "manycore" with hundreds of cores capable of running thousands of threads in parallel. NVIDIA's CUDA is a co-evolved hardware-software architecture that enables high-performance computing developers to harness the tremendous computational power and memory bandwidth of the GPU in a familiar programming environment - the C programming language. We describe the CUDA programming model and motivate its use in the biomedical imaging community.

Published in:

Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008. 5th IEEE International Symposium on

Date of Conference:

14-17 May 2008