By Topic

CUDA: Scalable parallel programming for high-performance scientific computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Luebke, D. ; NVIDIA Corp., Santa Clara, CA

Graphics processing units (GPUs) originally designed for computer video cards have emerged as the most powerful chip in a high-performance workstation. Unlike multicore CPU architectures, which currently ship with two or four cores, GPU architectures are "manycore" with hundreds of cores capable of running thousands of threads in parallel. NVIDIA's CUDA is a co-evolved hardware-software architecture that enables high-performance computing developers to harness the tremendous computational power and memory bandwidth of the GPU in a familiar programming environment - the C programming language. We describe the CUDA programming model and motivate its use in the biomedical imaging community.

Published in:

Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008. 5th IEEE International Symposium on

Date of Conference:

14-17 May 2008