Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Mutual information-based feature selection enhances fMRI brain activity classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

In this paper, we address the question of decoding cognitive information from functional magnetic resonance (MR) images using classification techniques. The main bottleneck for accurate prediction is the selection of informative features (voxels). We develop a multivariate approach based on a mutual information criterion, estimated by nearest neighbors. This method can handle a large number of dimensions and is able to detect the non-linear correlations between the features and the label. We show that, by using Mi-based feature selection, we can achieve better performance together with sparse feature selection, and thus a better understanding of information coding within the brain than the reference method which is a mass univariate selection (ANOVA).

Published in:

Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008. 5th IEEE International Symposium on

Date of Conference:

14-17 May 2008