By Topic

Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Doyle, S. ; Dept. of Biomed. Eng., Rutgers Univ., Piscataway, NJ ; Agner, S. ; Madabhushi, A. ; Feldman, M.
more authors

In this paper we present a novel image analysis methodology for automatically distinguishing low and high grades of breast cancer from digitized histopathology. A set of over 3,400 image features, including textural and nuclear architecture based features, are extracted from a database of 48 breast biopsy tissue studies (30 cancerous and 18 benign images). Spectral clustering is used to reduce the dimensionality of the feature set. A support vector machine (SVM) classifier is used (1) to distinguish between cancerous and non-cancerous images, and (2) to distinguish between images containing low and high grades of cancer. Classification is repeated using different subsets of features to compare their performance. The system achieves a 95.8% accuracy in distinguishing cancer from non-cancer using texture-based characteristics (Gabor filter features), and 93.3% accuracy in distinguishing high from low grades of cancer using architectural features. In addition, we investigate the underlying manifold structure on which the different grades of breast cancer lie as revealed through spectral clustering. The manifold shows a smooth spatial transition from low to high grade breast cancer.

Published in:

Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008. 5th IEEE International Symposium on

Date of Conference:

14-17 May 2008