By Topic

A new detection scheme for multiple object tracking in fluorescence microscopy by joint probabilistic data association filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ihor Smal ; Biomedical Imaging Group Rotterdam, Erasmus MC - University Medical Center Rotterdam, Netherlands ; Wiro Niessen ; Erik Meijering

Tracking of multiple objects in biological image data is a challenging problem due largely to poor imaging conditions and complicated motion scenarios. Existing tracking algorithms for this purpose often do not provide sufficient robustness and/or are computationally expensive. In this paper we propose a new object detection scheme, based on importance sampling from image intensity distributions, and show how it can be easily incorporated into a probabilistic tracking framework based on Kalman or particle filtering. Experiments on synthetic as well as real fluorescence microscopy image data from different biological studies show that the resulting tracking algorithm yields smaller localization errors at much lower execution times compared to other available methods.

Published in:

2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro

Date of Conference:

14-17 May 2008