By Topic

Constrained optimization of nonparametric entropy-based segmentation of brain structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Asl, A.A. ; Control & Intell. Process. Center of Excellence, Univ. of Tehran, Tehran ; Soltanian-Zadeh, H.

We propose a constrained, three-dimensional, nonparametric, entropy-based, coupled, multi-shape approach to segment subcortical brain structures from magnetic resonance images (MRI). The proposed method uses PCA to develop shape models that capture structural variability. It integrates geometrical relationship between different structures into the algorithm by coupling them (limiting their independent deformations). On the other hand, to allow variations among coupled structures, it registers each structure separately when building the shape models. It defines an entropy-based energy function, which is minimized using quasi-Newton algorithm. To this end, probability density functions (pdf) are estimated iteratively using nonparametric Parzen window method. In the optimization algorithm, constraints are used to improve segmentation quality. These constraints are extracted from training data. Sample results are given for the segmentation of caudate, hippocampus, and putamen, illustrating highly superior performance of the proposed method compared to the most similar methods in the literature.

Published in:

Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008. 5th IEEE International Symposium on

Date of Conference:

14-17 May 2008