By Topic

Robust Audio-Visual Speech Recognition Based on Late Integration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jong-Seok Lee ; Sch. of Electr. Eng. & Comput. Sci., KAIST, Daejeon ; Cheol Hoon Park

Audio-visual speech recognition (AVSR) using acoustic and visual signals of speech has received attention because of its robustness in noisy environments. In this paper, we present a late integration scheme-based AVSR system whose robustness under various noise conditions is improved by enhancing the performance of the three parts composing the system. First, we improve the performance of the visual subsystem by using the stochastic optimization method for the hidden Markov models as the speech recognizer. Second, we propose a new method of considering dynamic characteristics of speech for improved robustness of the acoustic subsystem. Third, the acoustic and the visual subsystems are effectively integrated to produce final robust recognition results by using neural networks. We demonstrate the performance of the proposed methods via speaker-independent isolated word recognition experiments. The results show that the proposed system improves robustness over the conventional system under various noise conditions without a priori knowledge about the noise contained in the speech.

Published in:

Multimedia, IEEE Transactions on  (Volume:10 ,  Issue: 5 )