By Topic

Coadaptive Brain–Machine Interface via Reinforcement Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jack DiGiovanna $^*$ ; Dept. of Biomed. Eng., Univer sity of Florida, Gainesville, FL ; Babak Mahmoudi ; Jose Fortes ; Jose C. Principe
more authors

This paper introduces and demonstrates a novel brain-machine interface (BMI) architecture based on the concepts of reinforcement learning (RL), coadaptation, and shaping. RL allows the BMI control algorithm to learn to complete tasks from interactions with the environment, rather than an explicit training signal. Coadaption enables continuous, synergistic adaptation between the BMI control algorithm and BMI user working in changing environments. Shaping is designed to reduce the learning curve for BMI users attempting to control a prosthetic. Here, we present the theory and in vivo experimental paradigm to illustrate how this BMI learns to complete a reaching task using a prosthetic arm in a 3-D workspace based on the user's neuronal activity. This semisupervised learning framework does not require user movements. We quantify BMI performance in closed-loop brain control over six to ten days for three rats as a function of increasing task difficulty. All three subjects coadapted with their BMI control algorithms to control the prosthetic significantly above chance at each level of difficulty.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:56 ,  Issue: 1 )