By Topic

A Stochastic Filtering Technique for Fluid Flow Velocity Fields Tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Anne Cuzol ; European University of Brittany-UBS, CNRS, UMR, France ; Etienne Mémin

In this paper, we present a method for the temporal tracking of fluid flow velocity fields. The technique we propose is formalized within a sequential Bayesian filtering framework. The filtering model combines an Ito diffusion process coming from a stochastic formulation of the vorticity-velocity form of the Navier-Stokes equation and discrete measurements extracted from the image sequence. In order to handle a state space of reasonable dimension, the motion field is represented as a combination of adapted basis functions, derived from a discretization of the vorticity map of the fluid flow velocity field. The resulting nonlinear filtering problem is solved with the particle filter algorithm in continuous time. An adaptive dimensional reduction method is applied to the filtering technique, relying on dynamical systems theory. The efficiency of the tracking method is demonstrated on synthetic and real-world sequences.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:31 ,  Issue: 7 )