By Topic

Handoff with DSP Support: Enabling Seamless Voice Communications across Heterogeneous Telephony Systems on Dual-Mode Mobile Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hung-Yun Hsieh ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei ; Chung-Wei Li ; You-En Lin

In this paper we investigate the problem of voice communications across heterogeneous telephony systems on dual-mode (WiFi and GSM) mobile devices. Since GSM is a circuit-switched telephony system, existing solutions that are based on packet-switched network protocols cannot be used. We show in this paper that an enabling technology for seamless voice communications across circuit-switched and packet-switched telephony systems is the support of digital signal processing (DSP) techniques during handoffs. To substantiate our argument, we start with a framework based on the session initiation protocol (SIP) for vertical handoffs on dual-mode mobile devices. We then identify the key obstacle in achieving seamless handoffs across circuit-switched and packet-switched systems, and explain why DSP support is necessary in this context. We propose a solution that incorporates time alignment and time scaling algorithms during handoffs for supporting seamless voice communications across heterogeneous telephony systems. We conduct testbed experiments using a GSM-WiFi dual-mode notebook and evaluate the quality of speech when the call is migrated from WiFi to GSM networks. Evaluation results show that such a cross-disciplinary solution involving signal processing and networking can effectively support seamless voice communications across heterogeneous telephony systems.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:8 ,  Issue: 1 )