By Topic

Fabrication and Characterization of Sidewall Defined Silicon-on-Insulator Single-Electron Transistor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Young Chai Jung ; Sch. of Electr. Eng., Korea Univ., Seoul ; Keun Hwi Cho ; Byoung Hak Hong ; Seung Hun Son
more authors

We reported the fabrication and characterization of a new type of silicon-on-insulator (SOI) single-electron transistor utilizing usual CMOS sidewall gate structures. We used oxide sidewall spacer layers as well as two poly-Si finger gates on an SOI wire mesa as implantation masks, to form tunnel barriers and thus a quantum dot (QD) that is smaller than the spacing between polygates. Characterization results exhibited clear Coulomb oscillations persisting up to 30 K. The Coulomb energy and the size of the QD extracted from three devices were consistent with the spacing between two poly-Si gates of each device. Furthermore, the junction capacitance of each device was almost constant and only the gate capacitance varied. These analyses suggested that the size of the QD was fully controlled by the process.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:7 ,  Issue: 5 )