By Topic

Self-Consistent Electromagnetic–Thermal Model for Calculating the Temperature of a Ceramic Cylinder Irradiated by a High-Power Millimeter-Wave Beam

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Fliflet, A.W. ; Div. of Plasma Phys., U.S. Naval Res. Lab., Washington, DC

The high-power millimeter-wave beams that can be generated by CW gyrotrons represent a promising energy source for rapid high-temperature processing of materials. A program is under way at the Naval Research Laboratory to investigate the heating of ceramic tubes and cylinders using an 83-GHz beam for joining and sintering applications. In this paper, we discuss the scattering and absorption of microwave power by a ceramic cylinder and calculate the resulting temperature profile. The analysis accounts for the temperature dependence of the dielectric properties, an effect that can dramatically alter the microwave coupling during the heating process. In the process under investigation, the cylinder is rotated to promote azimuthally uniform heating so that only the radial dependence of the dielectric properties needs to be included.

Published in:

Plasma Science, IEEE Transactions on  (Volume:36 ,  Issue: 3 )