Cart (Loading....) | Create Account
Close category search window
 

Rotation-Invariant Texture Retrieval via Signature Alignment Based on Steerable Sub-Gaussian Modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tzagkarakis, G. ; Inst. of Comput. Sci., Found. for Res. & Technol.-Hellas, Heraklion ; Beferull-Lozano, B. ; Tsakalides, P.

This paper addresses the construction of a novel efficient rotation-invariant texture retrieval method that is based on the alignment in angle of signatures obtained via a steerable sub-Gaussian model. In our proposed scheme, we first construct a steerable multivariate sub-Gaussian model, where the fractional lower-order moments of a given image are associated with those of its rotated versions. The feature extraction step consists of estimating the so-called covariations between the orientation subbands of the corresponding steerable pyramid at the same or at adjacent decomposition levels and building an appropriate signature that can be rotated directly without the need of rotating the image and recalculating the signature. The similarity measurement between two images is performed using a matrix-based norm that includes a signature alignment in angle between the images being compared, achieving in this way the desired rotation-invariance property. Our experimental results show how this retrieval scheme achieves a lower average retrieval error, as compared to previously proposed methods having a similar computational complexity, while at the same time being competitive with the best currently known state-of-the-art retrieval system. In conclusion, our retrieval method provides the best compromise between complexity and average retrieval performance.

Published in:

Image Processing, IEEE Transactions on  (Volume:17 ,  Issue: 7 )

Date of Publication:

July 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.