Cart (Loading....) | Create Account
Close category search window
 

Roadmap-Based Path Planning - Using the Voronoi Diagram for a Clearance-Based Shortest Path

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bhattacharya, P. ; Intermap Technol. Corp., Calgary, AB ; Gavrilova, M.L.

Path planning still remains one of the core problems in modern robotic applications, such as the design of autonomous vehicles and perceptive systems. The basic path-planning problem is concerned with finding a good-quality path from a source point to a destination point that does not result in collision with any obstacles. In this article, we chose the roadmap approach and utilized the Voronoi diagram to obtain a path that is a close approximation of the shortest path satisfying the required clearance value set by the user. The advantage of the proposed technique versus alternative path-planning methods is in its simplicity, versatility, and efficiency.

Published in:

Robotics & Automation Magazine, IEEE  (Volume:15 ,  Issue: 2 )

Date of Publication:

June 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.