By Topic

Computer-Aided Diagnosis of Thyroid Malignancy Using an Artificial Immune System Classification Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Delibasis, K.K. ; Nat. Tech. Univ. of Athens, Athens, Greece ; Asvestas, P.A. ; Matsopoulos, G.K. ; Zoulias, E.
more authors

The diagnosis of thyroid malignancy by fine needle aspiration (FNA) examination has been proven to show wide variations of sensitivity and specificity. This paper proposes the utilization of a computer-aided diagnosis system based on a supervised classification algorithm from the artificial immune systems to assist the task of thyroid malignancy diagnosis. The core of the proposed algorithm is the so-called BoxCells, which are defined as parallelepipeds in the feature space. Properly defined operators act on the BoxCells in order to convert them into individual, elementary classifiers. The proposed algorithm is applied on FNA data from 2016 subjects with verified diagnosis and has exhibited average specificity higher than 99%, 90% sensitivity, and 98.5% accuracy. Furthermore, 24% of the cases that are characterized as ldquosuspiciousrdquo by FNA and are histologically proven nonmalignancies have been classified correctly.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:13 ,  Issue: 5 )