By Topic

On the Equivalence of a Table Lookup (TL) Technique and Fuzzy Neural Network (FNN) With Block Pulse Membership Functions (BPMFs) and Its Application to Water Injection Control of an Automobile

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chi-Hsu Wang ; Dept. of Electr. & Control Eng., Nat. Chiao-Tung Univ., Hsinchu ; Jung-Sheng Wen

This paper presents an alternative method to design a fuzzy neural network (FNN) using a set of nonoverlapped block pulse membership functions (BMPFs), and this FNN with nonoverlapped BPMFs will be shown to be equivalent to the conventional table lookup (TL) technique. Therefore, the hidden links between TL and FNN techniques are revealed in this paper that provides a methodology to design a TL controller based on the FNN design concept. In order to do so, a new direct formula is first developed to generate the fuzzy rules from the premise part in FNN. This direct formula not only guarantees a one-to-one mapping that maps the fuzzy membership functions onto the fuzzy rules, but also alleviates the coding effort during hardware implementation. It is further elaborated that the FNN with nonoverlapped BPMFs has the advantage of faster online training that requires less computation time, but at the cost of more memory requirement to store the fuzzy rules. The application of this new approach has been applied successfully in the water injection control of a turbo-charged automobile with excellent results.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:38 ,  Issue: 4 )