By Topic

Open-Loop Digital Predistorter for RF Power Amplifiers Using Dynamic Deviation Reduction-Based Volterra Series

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Anding Zhu ; Sch. of Electr., Univ. Coll. Dublin, Dublin ; Paul J. Draxler ; Jonmei J. Yan ; Thomas J. Brazil
more authors

In this paper, we propose an efficient open-loop digital predistorter (DPD) derived from the dynamic deviation reduction-based Volterra series that allows compensation for both nonlinear distortion and memory effects induced by RF power amplifiers in wireless transmitters. In this approach, the parameters of the predistorter can be directly extracted from an offline system identification process. This eliminates the usual requirement for a closed-loop real-time parameter adaptation, which dramatically reduces the implementation complexity of the system. It is shown that a further reduction in system complexity can be achieved by applying under-sampling theory in the model extraction and utilizing parameter interpolation in the DPD implementation. Experimental results show that by utilizing this technique with only a small number of parameters, nonlinear distortion induced by the PA can be significantly reduced, as evaluated by both adjacent channel power ratio reduction and normalized root mean square error improvement. A comparison with a memoryless polynomial function based predistorter and an analysis of the impact of decresting are also presented.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:56 ,  Issue: 7 )