By Topic

A Constant-Time Algorithm for Finding Neighbors in Quadtrees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Aizawa, K. ; Dept. of Math. & Comput. Sci., Shimane Univ., Matsue ; Tanaka, S.

Quadtrees and linear quadtrees are well-known hierarchical data structures to represent square images of size 2r times 2r. Finding the neighbors of a specific leaf node is a fundamental operation for many algorithms that manipulate quadtree data structures. In quadtrees, finding neighbors takes O(r) computational time for the worst case, where r is the resolution (or height) of a given quadtree. Schrack [1] proposed a constant-time algorithm for finding equal-sized neighbors in linear quadtrees. His algorithm calculates the location codes of equal-sized neighbors; it says nothing, however, about their existence. To ensure their existence, additional checking of the location codes is needed, which usually takes O(r) computational time. In this paper, a new algorithm to find the neighbors of a given leaf node in a quadtree is proposed which requires just O(1) (i.e., constant) computational time for the worst case. Moreover, the algorithm takes no notice of the existence or nonexistence of neighbors. Thus, no additional checking is needed. The new algorithm will greatly reduce the computational complexities of almost all algorithms based on quadtrees.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:31 ,  Issue: 7 )