By Topic

Handwritten-Word Spotting Using Biologically Inspired Features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
van Der Zant, T. ; AI Dept., Univ. of Groningen, Groningen ; Schomaker, L. ; Haak, K.

For quick access to new handwritten collections, current handwriting recognition methods are too cumbersome. They cannot deal with the lack of labeled data and would require extensive laboratory training for each individual script, style, language, and collection. We propose a biologically inspired whole-word recognition method that is used to incrementally elicit word labels in a live Web-based annotation system, named Monk. Since human labor should be minimized given the massive amount of image data, it becomes important to rely on robust perceptual mechanisms in the machine. Recent computational models of the neurophysiology of vision are applied to isolated word classification. A primate cortex-like mechanism allows us to classify text images that have a low frequency of occurrence. Typically, these images are the most difficult to retrieve and often contain named entities and are regarded as the most important to people. Usually, standard pattern-recognition technology cannot deal with these text images if there are not enough labeled instances. The results of this retrieval system are compared to normalized word-image matching and appear to be very promising.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:30 ,  Issue: 11 )