By Topic

Robust Rate Control for Heterogeneous Network Access in Multihomed Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tansu Alpcan ; Deutsche Telekom Laboratories, Berlin ; Jatinder Pal Singh ; Tamer Başar

We investigate a novel robust flow control framework for heterogeneous network access by devices with multihoming capabilities. Toward this end, we develop an Hinfin-optimal control formulation for allocating rates to devices on multiple access networks with heterogeneous time-varying characteristics. Hinfin analysis and design allow for the coupling between different devices to be relaxed by treating the dynamics for each device as independent of the others. Thus, the distributed end-to-end rate control scheme proposed in this work relies on minimum information and achieves fair and robust rate allocation for the devices. An efficient utilization of the access networks is established through an equilibrium analysis in the static case. We perform measurement tests to collect traces of the available bandwidth on various WLANs and Ethernet. Through simulations, our approach is compared with AIMD and LQG schemes. In addition, the efficiency, fairness, and robustness of the Hinfin-optimal rate controller developed are demonstrated via simulations using the measured real-world network characteristics. Its favorable characteristics and general nature indicate applicability of this framework to a variety of networked systems for flow control.

Published in:

IEEE Transactions on Mobile Computing  (Volume:8 ,  Issue: 1 )